

GE GLOBAL RESEARCH

Naval-Industry R&D
Partnership
Conference 2004

Jeff Slotnick

GE Global Research

Began in Schenectady, New York in 1900

Founded with the focus to improve businesses through technology

One of the world's most diverse industrial labs

Cornerstone of GE's commitment to technology

c. 1900

2004

100 Years of Material Science...

GE Innovations

1909: Ductile Tungsten Filament

1913: First Medical X-Ray Tubes

1939: Non-Reflecting Glass

1946: Cloud Seeding

1953: Lexan® Polycarbonate

1955: Man-Made Diamonds

1962: Solid State Laser

1976: Fan Beam CT

1982: Ultem® High Performance Polymer

1988: Superconductivity for MRI

1999: Composite Fan Blade for Aircraft Engines

2000: Digital X-Ray

GE Has Always Been a Materials Company

11 Global Businesses

Advanced Materials

Commercial Finance

Consumer Finance

Consumer & Industrial

Energy

Equipment Services

Healthcare

Infrastructure

Insurance

NBC

Transportation

The People

GE Technologists

- 15,000+ Technologists Worldwide
- \$2.6 Billion Annual R&D Spending

GE Global Research Technologists

- 2,300 Technologists Worldwide
- \$384 Million Annual R&D Spending

Technical Disciplines

- Chemistry
- Mech. Eng
- Physics
- Electrical Eng.
 Ceramics

- Computer Science
- Metallurgy
- Biology

Investing in Technology

Funding Sources

The GE "Operating System"

Technology & Product Plans Coupled

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 **New Platforms First Third** Second Generation Generation Generation **Product Product Product** Features Features Features Cost Cost Cost Timing Timing Timing Technology Technology Technology Technology Advanced Technology

Advanced Technology Programs

Steady Progress of Key Long-term Programs:

Fuel Cells: Continuing research to make cells bigger, longer lasting, with higher power density. Increased oxidation resistance of metal interconnects by more than factor of ten; showed world-class power density on button cells.

Nanotechnology:

Nanotechnology: the "ultimate material science" - bringing property breakthroughs discovered in nanoaluminum to higher temperature metals for wider application in jet engines; initiated nanoceramics program for harsh environment sensors.

Molecular Medicine:

Identified new biomarkers for specific disease states, and invented molecules to bind to the biomarkers. Currently in preclinical trials to evaluate effectiveness of these diagnostic pharmaceuticals.

Pulsed detonation propulsion has potential to enable simpler and more efficient engines; demonstrated recent advances using aviation fuel; scaling up and targeting specific propulsion applications.

Nanotechnology for GE

The Ultimate Material Science...

- Potential to Impact Every GE Business
- Critical Enabling Technologies
- Creates a Step Change in Materials Technology

Nanotechnology AT

Ready to Serve

Multi-Generation Product Plans

CEO
Projects

Advanced Technology

Vision

- 5-10+ years to impact Business
- Corporate & external funding
- Incubator for nanotechnology
- Focal point for nanotechnology projects across GRC

The Team

~50 PhD Scientists:

Chemists, Physicists, Metallurgists, Ceramists,

Chemical Eng, Mechanical Eng, Electrical Eng.

Platform Technology Focus

The Nanotechnology Platforms

NanoTubes and NanoRods

NanoParticles

NanoCeramics

NanoStructured Metal Systems

NanoTubes & NanoRods

Technology Emphasis:

Synthesis & Ordering

- Synthesis of templates
- Synthesis of nanorods
 - -Electrochemical
 - –Laser deposition/VLS
 - -Chemical
 - -CVD
- Materials: Ni, Pt, Metal Carbides SWNT, MWNT

Device Integration

· Growth within device

NanoTubes & NanoRods

Product Impact:

Fluorescent Lighting

Increased efficiency

Photovoltaics

Cost-effective renewable power

Conductive Plastics

Metal replacement applications

NanoParticles

Technology Emphasis:

NanoParticle Synthesis

- Methods
 - -Solution: colloid, sol-gel
 - -Vapor
- Many material types

Controlled NanoParticle Synthesis

NanoParticle Functionalization

- Coatings/shell chemistry
 - -Surfactants
 - -Organic polymers
 - -Inorganic

Characterization

- Properties: magnetic, optical, biological
- Size/Shape: DLS, microscopy, zeta potential

NanoParticles

Product Impact:

Electronic Materials

- Thermal management for faster electronic devices
- Improved thermal conductivity
- Control CTE

Molecular Imaging

- Diagnosing disease before symptoms develop
- Improved contrast
- Improved targeting

NanoCeramics

Technology Emphasis:

Bioinspired Materials

- Increased Toughness
- Contained Damage

NanoCeramic Synthesis

Templating and Self-Assembly

High Temperature Stability

1500°C, 8 hours

NanoCeramics

Product Impact:

More Damage Tolerant Ceramics

- Power Generation & Aircraft Engines
- Improved efficiency: higher temp, lighter weight

NanoPhosphors

Improved effiency lighting

Harsh Environment Sensors

Nanostructured Metallic Systems

Technology Emphasis:

High-Strength Alloys

- Novel processes to create nanostructures
- Structure-property relationships

High-Temperature Stability

- Create mechanisms to prevent coarsening of nanostructures
- Computational modeling

Nanostructured Metallic Systems

Product Impact:

Aircraft Engines

- Weight reduction in fan blades
- Improved efficiency

Electric Power

High power density machines

High Efficiency Power Turbines

- Higher operating temperatures
- Improved life

GE Nanotechnology Driving Growth

- Building on 100 years of material science expertise
- Creating breakthroughs in material properties
- Will impact all GE businesses
- Expand into new markets
- Create new products and services

But Even GE Needs Partners

In order to move fast, be flexible, and keep costs down, GE must strategically partner....

Partners Customers Government **Suppliers** Labs **Universities**

Partnership must be win-win

Strategic Alliances at GE GR

GE's overall strategy for partnering:

- When?
 - a technology gap exists at GE
 - •makes sense for <u>all</u> partners

• How?

- use six sigma for partner selection
- method (JV, government funding, direct funding, etc.) is on case-by-case basis

- •it's a win-win for everyone
- roles and goals are well defined
- IP ownership agreed-to early

Partner Selection Is Critical

Use Six Sigma tools to help select partner — Partner

tradeoff analysis using QFD

	9															
Partnering QFD						Partnering QFD Pareto										
	Product Requ				Nano Company A											
Customer Expectation	Importance	Nano Company A	Nano Company B	Nano Company C	Nano Company B											
							npany (-								
Synergy with CNT growth technology	4	Н	L	М												
No End Use Conflict	5	М	L	Н				0		50		100	150	200	250	
Potential IP clash (no current strategy with anyo	5	Η	L	Н												
Responsiveness	4	М	Η	Ι	IVI		30									
Well-known technical lead	3	М	Н	L	Н		66									
Synergy with company's charter	ფ	М	М	Ι	Ι		72									
Timing - close within 1 week	5	М	М	L	М		50									
Synergy with device technology	5	Н	М	М	Н		120									
Compatible Business Model	3	L	М	М	Η		48									
Total		189	125	197	247											

Nanotechnology AT

Ready to Serve

Multi-Generation Product Plans CEO <

Advanced Technology

5-10+ years to impact Business

